博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 551 字,大约阅读时间需要 1 分钟。

问题

若矩阵A满足 A + A T = I A+A^{\rm{T}}=I A+AT=I,则A可逆。

证明一

反证法。假设A不可逆,则

∃ x 0 ≠ 0 \exists{x_0}\ne0 x0=0,使得 A x 0 = 0 A{x_0}=0 Ax0=0,则
x 0 A T = ( A x 0 ) T = 0 T {x_0}{A^{\rm{T}}} = {(A{x_0})^{\rm{T}}} = {0^{\rm{T}}} x0AT=(Ax0)T=0T

∴ 0 ≠ x 0 T x 0 = x 0 T ( A + A T ) x 0 = x 0 T A x 0 + x 0 T A T x 0 = x 0 T 0 + 0 T x 0 = 0 \therefore 0 \ne x_0^{\rm{T}}{x_0} = x_0^{\rm{T}}(A + {A^{\rm{T}}}){x_0} = x_0^{\rm{T}}A{x_0} + x_0^{\rm{T}}{A^{\rm{T}}}{x_0} = x_0^{\rm{T}}0 + {0^{\rm{T}}}{x_0} = 0 0=x0Tx0=x0T(A+AT)x0=x0TAx0+x0TATx0=x0T0+0Tx0=0

矛盾,所以A可逆。

证明二

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>